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SUMMARY 
Nowadays the simulation of free surface flow and transport in rivers, estuaries and seas is often based 
upon three-dimensional modelling systems. Most of these three-dimensional modelling systems use sigma 
co-ordinates in the vertical. By the use of the sigma transformation the water column can be divided into 
the same number of layers independently of the water depth. Especially for steep bottom slopes combined 
with vertical stratification of the density, sigma-transformed grids impose numerical problems for the 
accurate approximation of horizontal gradients. This paper deals with algorithms for the approximation 
in sigma co-ordinates of the horizontal diffusive fluxes of temperature and salinity and for the approxima- 
tion of the horizontal pressure gradients. The approximation of the horizontal diffusive fluxes is based 
upon a finite volume method. The approximation of the pressure gradients is directly related to the 
approximation of the diffusive fluxes. Artificial vertical diffusion and artificial flow due to truncation errors 
are minimized. The method described in this paper is not hampered by the so-called ‘hydrostatic consistency 
condition’. This will be illustrated by numerical experiments. 

KEY WORDS Three-dimensional modelling systems Shallow water Sigma co-ordinates Diffusive flux Pressure gradient 
Artificial vertical transport Artificial flow Hydrostatic consistency. 

1. INTRODUCTION 

Nowadays the simulation of free surface flow and transport in rivers, estuaries and seas is often 
based upon three-dimensional modelling systems. Most of these three-dimensional modelling 
systems use sigma co-ordinates for the numerical approximation in the vertical. By the use of 
the sigma transformation the water column is divided into the same number of layers in- 
dependently of the water depth. This leads to a smooth representation of the topography instead 
of the ‘staircase’ grid obtained with Cartesian co-ordinates. 

However, sigma-transformed grids impose numerical problems for the accurate approximation 
of horizontal gradients in the case of stratified flow over steep topography.’ This may lead to 
the conclusion that sigma co-ordinates are not acceptable for estuary models2 because of 
unrealistic mixing. 

Estuaries are sometimes defined as in interface between salt and fresh water (see e.g. Reference 
3). Generally in an estuary the bottom is strongly variable. There may be a transition from deep 
channels to shallow tidal flat areas. To model the physical processes in estuaries, a three- 
dimensional hydrodynamic modelling system should include density effects in the momentum 
equations and should also include transport equations for salt, heat, turbulent kinetic energy, 
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etc. In the vertical momentum equation the vertical accelerations are neglected, which leads to 
the hydrostatic pressure equation. Vertical velocities are computed from the continuity equation. 

The modelling of flow and transport is often based upon the following set of equations given 
in Cartesian co-ordinates: 

continuity equation, 

v * u  = 0; 

momentum equations in horizontal direction, 

Dui 1 dp 1 87. . 
, i = 1, 2, j = 1, 2, 3; ~ + __ - = ~- 2 . 2  

Dt po axi po axj 

hydrostatic pressure equation, 

- --Psi aP 
ax, 
_ -  

transport equations, 

1 = 1 ,  

where ui is the velocity in the xi-direction, p is the pressure, p is the density, po is the reference 
density, c, is the concentration of scalar quantities (e.g. salinity and temperature), F is the 
concentration flux due to advection and diffusion and T ~ , ~  is the shear stress computed by some 
turbulence closure model (DuJDt = dui/at + u, duJdx,, where the summation convention is 
used). 

We will also use the following notation: u = u l ,  u = u 2 ,  w = uj,  x = x l ,  y = x 2 ,  z = xj .  The 
vertical co-ordinate z is bounded by 

-d (x ,  Y )  < z G i ( x ,  JJ, t), 

where d is the depth below some plane of reference and i is the water level above some plane 
of reference. 

The density p follows from an equation of state given by 

p = P(S> TI, 
where s is the salinity and T is the temperature. 

In the next section sigma co-ordinates are introduced and some of the difficulties in the use of 
sigma grids near steep bottom slopes are discussed. Section 3 concerns the transport equation 
in sigma co-ordinates. A new algorithm for the accurate approximation of the horizontal diffusive 
fluxes is introduced. Section 4 deals with the approximation of the horizontal pressure gradient 
in the momentum equation. The relation between gradient fluxes in the transport equation and 
the contribution to the pressure gradient resulting from density differences will be shown. In 
Section 5 the numerical results for three test problems are described. Section 6 contains some 
concluding remarks. 

2. SIGMA CO-ORDINATES 

In three-dimensional shallow water models a sigma co-ordinate transformation is often a ~ p l i e d . ~  
For an elaborate discussion on the advantages and disadvantages of this approach, see 
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Reference 5. In our opinion the main advantage of this co-ordinate system is the fact that it is 
fitted to both the moving free surface and the bottom topography. This is essential for the 
accurate approximation of the vertical flow distribution without a large number of vertical 
grid points. Moreover, these ‘terrain-following co-ordinates’ allow an efficient grid refinement 
near the free surface (in the case of wind-driven flow) and near the bed. 

In this paper the sigma co-ordinate system is defined as 

x* = x, Y* = Y ,  
z-5 

f J = -  

H ’  
t* = t ,  

where H = ( + d is the total water depth, z = [(x, y ,  t )  or G = 0 at the free water surface and 
z = -d(x, y) or a = -1 at the bottom. 

The derivatives in the original Cartesian co-ordinate system are expressed in a-co-ordinates 
by the chain rule 

a a a o a  
at at* at a ~ ’  - +-- 

a a a G a  
axi ax: a x i a G  

a i a  
ax, H aa 

- +--, i = l , 2 ,  

- 

and substituted into (1). 
The velocities u:, i = 1, 2, 3, are defined by 

The velocities u: and us remain the strictly horizontal components of the velocity vector. 
The system of equations (1) becomes: 

continuity equation, 

a5 a(Hu*) a ( ~ u * )  a. 
at* ax* ay* aG -+- +- + - - 0 ;  

momentum equations, 

hydrostatic pressure equation, 

transport equations, 

ac: 
at* 
-+V**F:=O; 
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s i g m a = - I  0 

Figure 1. The a-grid 

where 

Dur au: au: au: au: 
~ t *  at* ax* ay* H a.  - + u * - + + * - + - - - - - .  

It should be noted that the turbulent closure models for arzj/axT are not necessarily an exact 
transformation of ari, j / a x j .  Sometimes they are reformulated within the framework of the 
transformed co-ordinates.6 

For numerical approximation a grid has to be defined. Owing to the a-transformation, this 
grid is fitted to the free surface and the bottom. In estuaries such a grid may deteriorate quite 
strongly in the presence of steep bottom slopes and shallow areas, e.g. near tidal flats (see Figure 
1). Grids of this type cause problems when computing horizontal gradients, as has been 
recognized by several authors (see e.g. References 1, 2, 5 and 7-9). 

We consider the transformation of the horizontal pressure gradient as follows: 

- ap - -. ap* a0 ap* ap* I (a4 
ax ax* ax aa ax* H ax a ~ )  :; - +--= _ _ _ _  + a - -  

Near steep bottom slopes small pressure gradients might be the result of the sum of two relatively 
large terms of opposite sign. Small truncation errors in the approximation of both terms result 
in a relatively large error in the pressure gradient. This might produce artificial flow. Observa- 
tions of this kind have led to the notion of ‘hydrostatic consistency’ (see e.g. Reference 8). In 
the notation used by Haney’ this consistency relation is given by 

where A x  and A o  are grid sizes. If this relation is not satisfied, then a numerical scheme might 



BATHYMETRY WITH STEEP BOTTOM SLOPES 919 

be non-convergent. However, in estuaries, tidal flats are characterized by H + 0, which means 
that convergence might become impossible. 

In the case of steep bottom slopes there are similar difficulties in the approximation of the 
horizontal gradient transport of matter, such as salinity and heat. 

3. APPROXIMATION OF DIFFUSIVE FLUXES 

The fluxes of the transport equations (Id) consist of both advective and diffusive fluxes. In sigma 
co-ordinates the approximation of the advective fluxes does not introduce large truncation errors. 
Therefore in this section we consider only diffusive fluxes given by 

where D, denotes the horizontal eddy diffusion coefficient and Dv denotes the vertical eddy 
diffusion coefficient. The vertical eddy diffusion coefficient is determined by a turbulence closure 
scheme. The horizontal eddy diffusion coefficient depends on the horizontal grid resolution and 
is usually an order of magnitude larger. 

Transformation of the horizontal diffusion terms to x*, y*, a, t* is a tedious task, leading by 
the chain rule to various cross-derivatives. For example, the transformation of a simple 
second-order derivative leads to 

+ 2 - -  _-__ 

For such a combination of terms it is difficult to find a numerical approximation that is stable 
and positive. Near steep bottom slopes or near tidal flats where the total depth becomes very 
small, truncations errors in the approximation of the horizontal diffusive fluxes in a-co-ordinates 
are likely to become very large, similarly to the horizontal pressure gradient. Some authors6 
omit several terms of the transformation, yielding the following diffusive fluxes: 

The physical conditions (upwelling) which cause this new formulation to give a better description 
of the transport process are certainly not fulfilled in many estuaries. If we omit vertical diffusion, 
then this new formulation will still cause some numerical vertical diffusion, especially near steep 
bottom slopes or near tidal flats. Owing to this phenomenon, it will be difficult to simulate the 
stratification of a salt wedge in an estuary very accurately. Thus the complete transformation 
must be included. However, in that case numerical problems are encountered concerning 
accuracy, stability and monotonicity. In this section a method is introduced which gives a 
consistent, stable and monotonic approximation of the horizontal diffusion terms even when 
the hydrostatic consistency condition is violated. The method is based upon a finite volume 
method. 

3.1. AJinite volume methodfor a a-grid 

Description of the algorithm. Finite volume methods"-" are commonly used for the 
approximation of systems of conservation laws. They yield conservative approximations for 
arbitrary grids without the need for explicit analytic transformation of Cartesian equations. In 
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general, a finite volume method is based upon integration of the transport equation, given in 
Cartesian co-ordinates, over a control volume combined with the Gauss theorem. The Gauss 
theorem is given by 

V - F  dv = F e n  ds, s, I 
where n denotes the normal to the boundary. Applied to equation (Id), this yields 

du + f F - n  ds = 0. 

Taking into account 
this equation can be 

that the control volume is time-variable, as in the case of a-co-ordinates, 
written as 

$ c du + I F e n d s  = c an at ds. 

The right-hand side of this equation describes some pseudo-advection due to the displacement 
of the vertical walls of the control volume. In a-co-ordinates this is taken into account by the 
definition of w. The fluxes of this equation can be added together to yield a new flux F*. After 
dropping the asterisk, we obtain 

IU c dv + I F e n d s  = 0. (4) 

Instead of transforming the transport equation to a-co-ordinates, we generate a sigma grid by 
choosing a distribution of the vertical co-ordinate sigma: 

{ak(k = 0,. . . , K } ,  I s K  = 0, a() = -1, 

where K is the number of layers. 
Consider the sigma grid lines as the boundaries of the time-varying control volumes in 

Cartesian co-ordinates. In this way we obtain finite volumes as given by Figure 2. 
The direction of the vertical grid lines is such that the vertical diffusive fluxes are straight- 

forward to implement. The only true difficulty is the approximation of the horizontal 
diffusive fluxes. For that purpose a special method is constructed. To explain this method, it is 
sufficient to consider a simplified two-dimensional transport equation 

&(x, z, t )  a ac(x, z, t )  
-- D, = 0. 

at ax ax 

We use cell-centred finite volumes. This means that the numerical values c ~ , ~  are located at the 
cell centres as given by Figure 2. For the simplified diffusion equation and for the cell-centred 

* This relation can be proved by repeated application of the Leibnitz integration rule, which is given by 
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I - 11 2 .  k -  I f  2 

i - I/ 2 . k + l l 2  

Figure 2. Cell-centred control volumes 

c t + l / 2 , k - 1 1 2  

C 

Figure 3. Cell numbering 

volume given by Figure 3, the finite volume method implies a numerical approximation of the 
following integrals: 

(6) 

For this equation a finite volume method has to be constructed that meets the following 
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Figure 4. Control volume for diffusive fluxes 

requirements: (i) consistent approximation of the horizontal diffusive fluxes; (ii) fulfilment of the 
min-max principle; (iii) minimal artificial vertical diffusion. 

For the discretization of ( 5 )  approximations of &/ax have to be given at the side walls of the 
control volume. For this aim we consider in Figure 4 the points a-f, where 

xa = xA, z a  = (ZA + zD)/2, 

zb = (zB + zC)/2, x b  = XB, 

x, = xct zc = (zB + zC)/2, 

zd = (ZA + zD)/2, xd = XD, 

xc = (xA + xD)/29 ze  = (zA + zD)/2, 

xf = (XB + xC)/2, Zf = (zg + zJ2. 

If in the interval [(x,, z,), ( x ~ ,  XB)] the same numerical approximation for dc/& is used as in the 
interval [(x,, z ~ ) ,  (xb, zb)], then the integral along these two intervals is zero. The same result 
can be obtained along the intervals [(xe, ze), (xc, zc)] and [(x,, zc), (xc, zc)]. By the same argument 
one can assume that in the intervals [(x,, zA), (xf, zt)] and [ ( x ~ ,  zD), (xd, zd)] the integrals are 
the same. On the basis of these assumptions one can show that a consistent, semi discrete 
approximation of equation (6) is given by 

The time derivative on the left-hand side of this equation can be approximated by any time 
integration method (see e.g. Reference 13). We will use Euler's explicit method. 
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Figure 5. Control volumes for diffusive fluxes 

For the right-hand side one must realize that cells of shape abcd might have more than two 
adjacent cells in the horizontal direction (see Figure 5). For the approximation of the right-hand 
side of equation (7) an interval 

CmiN-di, - d i + l ) ,  max(C, i i + 1 ) 1  

between two vertical columns of control volumes is divided into 2K + 1 subintervals 

[ Z i +  1/2.1, Zi+ 1/2,1+ 11, 1 = 0, . . . ,2K, 

The set of points {zi+ 1/2.0,. . . , zi+ 1,2 ,2K+ 1) is ordered such that 

ZO = min(-di, -di+ I), Z 2 K +  1 = max(ci, & +  1). 

z i + 1 / 2 , 1 + 1  a z i + 1 / 2 , 1  f o r l = 0 , * . * , 2 K .  

{ C i +  1 + bkHi+ 1 lk = 0, . . ., K}, 

This set results from a sort-merge operation of the two sets 

{[i + O k H i I k  = 0, .  . . , K), OK = 0, 60 = -1. 

To each interval [zi+ 1,2 , f ,  z i+  1 / 2 , f +  1] one or two adjacent cells are connected with cell-centred 
concentrations c ~ . ~ ( ~ )  and c ~ + ~ , " ( * ) .  Here m(l) and n(l) denote cell numbers. In extreme cases, such 
as in the case of cells neighbouring tidal flats, m(l) or n(l) only contains the number of the cell 
of the top layer. If there is only one cell connected to an interval, as might happen near the 
bottom or near the free surface, then the diffusive flux is assumed to be zero (see Figure 
5). It also follows from Figure 5 that adjacency of control volumes is not according to grid lines 
of constant 6 but according to the smallest possible difference in the vertical co-ordinates. 
Adjacency is no longer a one-to-one relation, since one cell might be adjacent to various cells. 

For adjacent cells the mutual diffusive flux must be approximated. A straightforward approach 
would be to approximate &/ax in the centre of the mutual interval [zi+ 1/2,1, z i +  112,1+ 1], denoted 
by zi+ 1/2.1+ 1/29 as 

3 (8) 
a C ( x i + l / 2 , z i + l / 2 . ~ + 1 / 2 )  ~ c i + l ( z i + 1 / 2 . 1 + 1 / 2 )  - c i ( z i + 1 / 2 . 1 + 1 / 2 )  

ax X i +  1 - Xi 
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where ci(z) denotes some interpolation function that interpolates between the values c ~ , ~ ,  . . . , cieK. 
As interpolation function one can use Lagrangian or Hermitian interpolation functions of any 
order. However, this approach, as was shown by numerical experiments, has the following 
disadvantages: (i) no guaranteed fulfilment of the min-max principle; (ii) a slight (depending on 
the order of the interpolation function) but persistent artificial vertical diffusion in all cases 
except for a linear vertical distribution of the concentration. 

To circumvent these disadvantages, a non-linear approach is chosen which consists of the 
following steps. 

Step 1 

First, diffusive fluxesf;:, 1,2, 1 = 0, .  . . , 2 K ,  are defined according to 

Z i + 1 / 2 . ~ + 1  - Z i + 1 / 2 . 1  (9) DH max(A,c, Ant) , A,c < 0 A A,c < 0, 
X i +  1 - Xi 

fi+ 1 /2 .1+  1 /2  = 

Ac, A, c < 0. 

The differences Amlnc = A m n l n c i +  1j2,1+ are given by 

where ci(z) is a simple linear interpolation formula given by 

Z i , k + l  - 
Ci.k,  Zi.k < < Z i . k + l ,  

-~ 
ci .k+ 1 + 

z i . k + l  - Zi.k 

2 Zi ,K.  

The coefficients of this interpolation formula are always positive and less than or equal to one. 
The two possible stencils for the finite difference approximation of the horizontal gradient are 
shown in Figure 6. 

Step 2 

In this step the diffusive fluxes are added to the appropriate control volumes according to 

V T . + k l C f , + k l  = Vj,kcf ,k  - At fi+ 1 / 2 . 1 +  112 + At 1 ft- l , 2 . I +  112, (12) 
Vllm(1) = k Vlln(l)=k 

where z is the time index, t = rAt and v' denotes the size of the control volume. The absence 
of advection implies V' = 

Consistency of dzffisioefluxes. For a finite volume method for diffusion problems a consistent 
approximation of the diffusive fluxes is a necessary condition. Obviously this condition is 
equivalent to the condition that &/ax must be approximated consistently in the intervals 
(zi+ 112.19 z i +  1 / 2 . 1 +  11, I =  0,. . . 2 K .  
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Figure 6. Stencils for diffusive fluxes 

Before proving consistency, we define the values Az and Ax as 

A,z = maxIzi,k+l - Z i , k l ,  Ax = max)xi+, - xil 
Vi,  k Vi 

Equation (9) implies 

From this it follows that the first two possibilities of equation (9) are indeed consistent 
approximations of the diffusive fluxes. The third possibility means a zero flux in the case of 
gradients of opposite sign at both ends of the interval [ z ~ , ~ ( ~ ) ,  z~,~(,)]. Because of this change in 
sign, a zero flux is also a consistent approximation in this interval. This means that equation 
(9) gives at least a first-order-consistent approximation. 
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Min-max condition. The min-max condition (see e.g. Reference 14) implies the following: 

min(cZk) < c;,: < max(c;,,) Vi ,  k. 

This is a necessary condition to get numerical solutions that are physically acceptable. Especially 
for the numerical implementation of diffusion this is important, since the physical nature of 
diffusion implies reduction of the gradients and not amplification. 

In the following we will show that the algorithm given by equations (9)-(12) fulfils this 
condition. For 

Vi. k Vi. k 

the following inequality holds: 

Cf,:' 2 c ; ,k  + - - c f f + 1 / 2 , 1 + 1 / 2  + 1 f f - 1 / 2 . 1 + 1 / 2  vi, At k ( Vllm(1) = k A f >  0 V l ( n ( l ) = k  A f < O  

From this relation and equation (9) the following inequality follows: 

This inequality can be rewritten as 
K K 

cf,:' 3 ( l  - Atai.k)c;,k + At c pi,k,Ic;-l,I + At Y i , k . I C ; + l , b  
I =  1 I =  1 

where a, fl  and y are coefficients that are zero or positive as follows from equations (10) and 
(1 1). These equations also yield the following: 

I =  1 I = 1  

Now it follows that if 

Atai,j < 1 Vi ,  j ,  

then 

cf,: >/ min(ci, k) Vi ,  k. 

In a similar way one can prove that 

c;,:' < max(c;,,) Vi ,  k .  

The proof of this maximum principle starts with the observation that 

At ( c f ; + 1 / 2 . 1 + 1 / 2  - c f ; - 1 / 2 . 1 + 1 / 2  9 ) cf,: < c{,k - - 
K, k V I lm(1)  = k A f <  0 Vlln(1) = k  A f > O  

after which the proof is completely analogous. Again also condition (13) must be fulfilled. Note 
that in case of a constant horizontal grid size Ax and a constant horizontal diffusion D, this 
condition is always fulfilled if 

DH AtlAx2 < (14) 

This is the usual stability condition for explicit approximations of a one-dimensional diffusion 
equation. Obviously the min-max condition is a sufficient condition for stability. 
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4. APPROXIMATION OF THE PRESSURE TERM 

This section deals with the approximation of the horizontal gradient of the pressure, J p / J x ,  in 
equation (1). For this approximation we assume a staggered grid as shown in Figure 7. 

The horizontal gradients of the pressure must be approximated for the horizontal momentum 
equations. From Figure 7 it follows that the pressure gradient must be computed along the 
same verticals as the horizontal concentration gradients. The pressure p in Cartesian co-ordinates 
is given by 

p(x, z‘, t )g dz’. s’ z ’ = z  
p(x ,  z, t )  = 

From the Leibnitz rule it follows that ap/ax is given by 

The relation between the density p and the salinity s and temperature T is given by the equation 
of state 

p = P(S(X, t), w, 0). 

ap  ap  as ap  aT 
ax  as ax  aT ax 

It follows that 

-=--  +--. 

If the horizontal gradients of the concentrations are zero, then there is no contribution of the 
horizontal density gradients to the driving force in the momentum equation. It is important to 
have exactly the same mechanism in the numerical approximation. This meuns that if the 

w 
i , k + I l Z  

U 
I - 1 l Z . k  

0 

0 

C 
i k  

U 
I + l l ? . k  

w 
I . k - 1 / 2  

Figure 7. Staggered grid for a-co-ordinates in physical space 
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horizontal gradients used in the transport equation are zero, then the horizontal gradients of the 
pressure should be zero too. If not, then there will always be artificial flow near steep bottom 
slopes owing to truncation errors. Therefore the procedure described in Section 3 will also be 
used for the approximation of dp/ax; in other words, the numerical approximations for the 
horizontal concentration gradients will be used for the approximation of the pressure gradients. 

The integral in equation (15) is replaced by a summation over the intervals which are in the 
water column above the velocity point with vertical co-ordinate z. In this way we obtain the 
following approximation of equation (15): 

Y 

where 

K = max{llzi+,/2,, < z } .  

Obviously, when equation (16) is applied, then zero horizontal gradients of salinity and 
temperature imply zero density gradients, so artificial upwelling is minimized. A density field 
which is physically in equilibrium will remain in equilibrium. This observation will be illustrated 
in the next section. Note that this approximation implies that sigma transformation is taken 
into account implicitly and at the numerical level rather than by explicit and analytic transforma- 
tion of equation (15). This approach is similar to the finite volume approach for diffusion; in 
other words, for convergence this approach does not have to satisfy the hydrostatic consistency 
condition. 

5. TEST PROBLEMS 

In this section three test problems will be considered. The first test problem deals with a 
horizontal diffusion problem. The second example illustrates the horizontal pressure computa- 
tion proposed in this paper. These two examples are two-dimensional lateral-averaged. The third 
example consists of a three-dimensional diffusion problem. 

The first test problem deals with a simple diffusion equation given by equation (5). The 
bathymetry (see Figure 8) is given by 0 < x < 100 m and -x/10 - 1 < z < 0. The boundaries 
at x = 0 and 100 are closed. Here zero diffusive fluxes are prescribed at the boundaries. The 
initial condition is given by 

0.0kgm-3 forz 2 -5m, 
300kgm-3 forz < -5m. 

c = {  

Vertical diffusion is assumed to be zero. The horizontal diffusion coefficient D H  is set at 10 m2 s-’.  
The initial condition is an equilibrium solution and so also is the steady state solution. For the 
numerical approximation we use a sigma grid with 10 x 10 grid cells. The initial condition is 
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z = o  0 

2 . - 5  0 

z = - 1 0  5 

Figure 8. Test problem with trivial solution: zero flow and c = Olz 2 - 5 ,  c = 3012 < - 5  

taken from the steady state solution. Owing to truncation errors in the approximation of the 
horizontal gradients on the sigma grid, this initial condition is not a steady state solution of the 
difference equations. The method we propose in this paper gives a steady state solution that is 
slightly diffused in the vertical direction. Figure 9 shows concentation profiles in the vertical 
direction of a steady state solution. Many numerical approximations have no steady state 
solution for this problem, because the truncation errors are never eliminated. If the number of 
vertical grid points is increased, then the steady state solution becomes more accurate (see Figure 
10). For this solution the number of vertical grid points was 80. The number of horizontal grid 
points was not changed. 

This test illustrates that improved stratification is obtained as a result of increasing the vertical 
resolution without increasing the horizontal resolution. This is contrary to other  method^.^ 
Figure 11 shows results for a bottom profile with a steeper slope. For such a topography our 
method introduces only a small amount of numerical vertical diffusion until a steady state is 
reached. 

The second test problem consists of a coupled flow and transport problem. The bathymetry 
is the same as for the previous test problem but with a steep slope, i.e. the depth d(x )  is 
given by 

O d x < O ,  
+ (X - 40)/2, 40 < x < 60, 

60 -= x < 100. 10.5, 
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z = - 1 0  5 
\ 

Figure 9. Steady state vertical salinity distribution ( K  = 10) 

0 

5 0  

1 0 . 5  

Figure 10. Steady state vertical salinity distribution (K = 80) 
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Figure 11. Steady state vertical salinity distribution near steep slope 

The system of equations to be approximated is as follows: 

au I ap v, a Z U  a2u 
at* Po ax H Z  a a 2  ax*2 ’ n -  - + - - = - - - + v  

ay a(Hu) am -+- +--0, 
at* ax* aa 

-+-+-=- H D H - .  
at* ax* aa ax a ( ::) a(Hc) a(Huc) amc 

An asterisk indicates that the term is already transformed to the new sigma co-ordinate system. 
The unmarked terms are still in the Cartesian co-ordinate system. Their transformation takes 
place implicitly via the numerical method which is used. For the computation of the density a 
simplified equation of state is used given by 

p = 1000 + c. 

Zero water levels and velocities are prescribed as initial conditions. The initial condition of the 
salinity is the same as for the previous test problem. Boundary conditions are given by 

30 kg m-3, 
Okgm-3, 

-d(100)  < z < 5, 
5 .c z < l(lO0). 

c(100, z ,  t )  = 
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The exchange coefficients DH and vH,, are constant and equal to 10.0, 2.0 and 0.1 mz s - '  
respectively. The vertical diffusion coefficient D, is set to zero. The exact solution is a trivial 
one with zero velocities, zero gradients of the water level and a distribution of the salinity equal 
to the distribution of the previous test problem. Many numerical methods, however, will produce 
artificial flow for this and similar situations (see e.g. Reference 15). To illustrate this, we first 
consider an approximation of the pressure term which is based upon a straightforward 
transformation of the pressure gradient. This straightforward transformation is given by 

joo p do' + pg( 2 + o g). a p  a p  ao a p  a 
ax  ax* ax aa ax* - + - - = __ gH 

Streamlines for the steady state solution are shown in Figure 12. The maximum velocity 
obtained near the slope is of the order of 0.15 m s-' .  This is entirely due to truncation errors! 
The concentration profiles are shown in Figure 13. 

Our method produces initially some artificial flow until the concentration field has reached 
a steady state. The velocities are decreased by vertical viscosity and bottom friction. In the 
steady state the velocities are absolutely zero. The concentration distribution is shown in Figure 
14. 

It should be noted that the equilibrium solution is independent of the amount of horizontal 
eddy diffusivity as long as the coefficient is not zero. To reach the steady state solution as fast 
as possible, it is efficient to start the computations initially without density effects in the pressure 
term, the so-called diagnostic mode,16 and then to continue with density effects, the so-called 
prognostic mode.' 

The third test is a three-dimensional diffusion problem. The bathymetry is shown in Figure 
15. It has different bottom slopes in different directions. The basin is closed at all boundaries. 
This means that zero fluxes are prescribed at all boundaries. The computational domain consists 
of 10 x 10 x 10 grid points. The initial conditions are the same as for the first test problem. 
The steady state solution is shown in Figure 16. All diffusive fluxes are approximately zero, i.e. 
the flow generated by density differences will be zero too for this case. 

\ 

Figure 12. Flow due to truncation errors 
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Figure 13. Vertical salinity distribution ( K  = lo), Dirichlet boundary condition 

Figure 14. Concentration profiles of steady state solution 
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Figure 15. Bathymetry of 3D test problem 

Figure 16. Concentration profiles in various cross-sections 

It should be noted that if Dirichlet-type boundary conditions are prescribed (i.e. concentra- 
tions), then zero fluxes are not always the steady state equilibrium solution, despite the fact that 
this might well be the case for the solution of the differential equations. Hence artificial flow 
might remain. This artifical flow will in general be small, but if this hampers the accuracy 
significantly, then concentrations can be compared firstly on the basis of purely von Neumann 
(flux) boundary conditions. Boundary conditions derived from the steady state solution can be 
prescribed with a slightly diffused vertical concentration gradient, so that in the case of a steady 
state solution all fluxes are zero. Hence in the prognostic mode artificial flow will not be 
generated. 

6. CONCLUDING REMARKS 

In this paper a numerical method has been derived for the approximation of horizontal gradients 
in sigma co-ordinates which does not introduce large truncation errors in the case of vertical 
stratification. For the approximation of the horizontal diffusive fluxes this method is based upon 
a finite volume approach. This allows derivation of the method conceptually within Cartesian 
co-ordinates although a sigma grid is used. Owing to a simple filter that does not influence the 
consistency, the method is positive and does not have truncation errors that produce artificial 
vertical diffusion. 

When the computation of the horizontal pressure gradient is based upon integration of the 
horizontal concentration gradients as computed with the transport algorithm, then artificial 
upwelling is minimized. The set-up of an additional Cartesian grid increases the computational 
complexity. However, the increase in computational cost is relatively small. 

When this approach is used, sigma co-ordinate systems can be applied to simulations of 
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stratified flow in estuaries with tidal flats and steep bottom slopes, even in cases where the 
‘hydrostatic consistency’ condition is violated. 
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